QRS detection and classification in Holter ECG data in one inference step

0
  • Pan, J. & Tompkins, WJ A real-time QRS detection algorithm. IEEE Trans. Biomed. Closely. 32(3), 230-236 (1985).

    CAS
    article

    Google Scholar

  • Elgendi, M. Fast QRS detection with an optimized knowledge-based method: Evaluation on 11 standard ECG databases. Plus one 8th(9), e73557 (2013).

    To sue
    CAS
    article

    Google Scholar

  • Malik, J., Soliman, EZ & Wu, HT An adaptive QRS detection algorithm for ultra-hollow ECG recordings. J. Electrocardiol. 60165-171 (2020).

    article

    Google Scholar

  • Hamilton, P. & Limited, EP Open Source ECG Analysis. (2002).

  • Engelse, W.A. & Zeelenberg, C. A single-scan algorithm for QRS detection and feature extraction. IEEE calculation. cardio. 237-42 (1979).

    Google Scholar

  • A. Lourenço, H. Silva, P. Leite, R. Lourenço and A. Fred, “REAL-TIME ELECTROCARDIOGRAM SEGMENTATION FOR FINGER-BASED ECG BIOMETRICS”, in Proceedings of the International Conference on Bio-inspired Systems and Signal Processing2012, pp. 49–54.

  • V. Kalidas and L. Tamil, “Real-time QRS detector with stationary wavelet transform for automated ECG analysis”, in Proceedings – 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering, BIBE 20172017, vol. 2018-January, pp. 457–461.

  • Mehta, SS, Shete, DA, Lingayat, NS & Chouhan, VS K-means algorithm for detecting and delineating QRS complexes in the electrocardiogram. IRBM 31(1), 48-54 (2010).

    article

    Google Scholar

  • Saini, I., Singh, D. & Khosla, A. QRS detection using K-nearest-neighbor algorithm (KNN) and analysis on standard ECG databases. J.Adv. resolution 4(4), 331-344 (2013).

    article

    Google Scholar

  • Cai, W. & Hu, D. QRS complex detection using novel deep learning neural networks. IEEE access 8th97082-97089 (2020).

    article

    Google Scholar

  • Silva, P et al. For better heartbeat segmentation with deep learning classification. Science. representative 101-13 (2020).

    article

    Google Scholar

  • Moody, GB & Mark, RG The Impact of the MIT-BIH Arrhythmia Database. IEEE Eng. Med. biol. Like. 20(3), 45-50 (2001).

    CAS
    article

    Google Scholar

  • De Chazal, P., O’Dwyer, M. & Reilly, RB Automatic classification of heartbeats using ECG morphology and heartbeat interval functions. IEEE Trans. Biomed. Closely. 51(7), 1196-1206 (2004).

    article

    Google Scholar

  • Nascimento, NMM et al. Classification of cardiac arrhythmias based on statistical moments and structural co-occurrence. circuits system signaling process. 39(2), 631-650 (2020).

    article

    Google Scholar

  • Hammad, M., Iliyasu, AM, Subasi, A., Ho, ESL & El-Latif, AAA A multilevel deep learning model for arrhythmia detection. IEEE Trans. Instrument. measuring 7063 (2021).

    article

    Google Scholar

  • Wang, R., Fan, J. & Li, Y. Deep multiscale fusion neural network for detecting multiclass arrhythmias. IEEE J Biomed. Heal. computer science 24(9), 2461-2472 (2020).

    CAS
    article

    Google Scholar

  • Ferretti J, Randazzo V, Cirrincione G & Pasero E. 1-D Convolutional Neural Network for ECG Arrhythmia Classification. in the Intelligent innovation, systems and technologies Vol. 184 269-279 (Springer, 2021).

    Google Scholar

  • Oh, SL, Ng, EYK, Tan, RS & Acharya, UR Automated diagnosis of arrhythmia using a combination of CNN and LSTM techniques with variable length heartbeats. Calculation. biol. medication 102278-287 (2018).

    article

    Google Scholar

  • F. Murat, O. Yildirim, M. Talo, UB Baloglu, Y. Demir and UR Acharya, “Application of deep learning techniques for heartbeat detection using ECG signal analysis and verification” Computers in biology and medicineVol. 120. Elsevier Ltd, 1 May 2020.

  • Chen, A et al. Neural multi-information fusion networks for automatic arrhythmia detection. Calculation. Methods Programs Biomed. 1932 (2020).

    article

    Google Scholar

  • Moody, G., Moody, B. & Silva, I. Robust detection of heartbeats in multimodal data: The Physionet/Computing in Cardiology Challenge 2014. Calculation. cardio. 41549-552 (2014).

    Google Scholar

  • Gao, H et al. A freely accessible ECG database for algorithmic evaluation of QRS detection and heart rate estimation. J.Med. Imaging Healing. information 99 (2019).

    article

    Google Scholar

  • da Silva HP, Lourenço A, Fred A, Raposo N & Aires-de-Sousa M. Check Your Biosignals Here: A new dataset for off-the-person ECG biometrics. Calculation. Methods Programs Biomed. 113(2), 503-514 (2014).

    article

    Google Scholar

  • Taddei, A. et al. The European ST-T database: standard for evaluating systems for analyzing ST-T changes in ambulatory electrocardiography. EUR. heart j 139 (1992).

    article

    Google Scholar

  • Goldberger, AL et al. PhysioBank, PhysioToolkit and PhysioNet: components of a new research resource for complex physiological signals. Traffic 101(23), E215-E220 (2000).

    CAS
    article

    Google Scholar

  • Kaljakulina, AI et al.“LU Electrocardiography Database: A new open-access validation tool for delineation algorithms”, arXiv. 2018

  • Laguna, P., Mark, RG, Goldberg, A. & Moody, GB Database evaluating algorithms for measuring QT and other waveform intervals in the ECG. Calculation. cardio. 25 (1997).

    Google Scholar

  • Greenwald SD, Patil RS & Mark RG Improved detection and classification of arrhythmias in noisy electrocardiograms using context information within an expert system. Biomed. Instrument. technol. 262 (1992).

    Google Scholar

  • Moody, GB The Physionet/Computers in Cardiology Challenge 2008: T-Wave Alternans. Calculation. cardio. 3525 (2008).

    Google Scholar

  • Silva, I. & Moody, GB An open source toolbox for analyzing and processing Physionet databases in MATLAB and Octave. J. Open Res. software 22 (2014).

    article

    Google Scholar

  • Passke, A. et al. PyTorch: A powerful imperative-style deep learning library. Advanced Neural Inf. Procedure. system 322 (2019).

    Google Scholar

  • Share.

    Comments are closed.